Fabrication of scalable tissue engineering scaffolds with dual-pore microarchitecture by combining 3D printing and particle leaching.

نویسندگان

  • Soumyaranjan Mohanty
  • Kuldeep Sanger
  • Arto Heiskanen
  • Jon Trifol
  • Peter Szabo
  • Marin Dufva
  • Jenny Emnéus
  • Anders Wolff
چکیده

Limitations in controlling scaffold architecture using traditional fabrication techniques are a problem when constructing engineered tissues/organs. Recently, integration of two pore architectures to generate dual-pore scaffolds with tailored physical properties has attracted wide attention in tissue engineering community. Such scaffolds features primary structured pores which can efficiently enhance nutrient/oxygen supply to the surrounding, in combination with secondary random pores, which give high surface area for cell adhesion and proliferation. Here, we present a new technique to fabricate dual-pore scaffolds for various tissue engineering applications where 3D printing of poly(vinyl alcohol) (PVA) mould is combined with salt leaching process. In this technique the sacrificial PVA mould, determining the structured pore architecture, was filled with salt crystals to define the random pore regions of the scaffold. After crosslinking the casted polymer the combined PVA-salt mould was dissolved in water. The technique has advantages over previously reported ones, such as automated assembly of the sacrificial mould, and precise control over pore architecture/dimensions by 3D printing parameters. In this study, polydimethylsiloxane and biodegradable poly(ϵ-caprolactone) were used for fabrication. However, we show that this technique is also suitable for other biocompatible/biodegradable polymers. Various physical and mechanical properties of the dual-pore scaffolds were compared with control scaffolds with either only structured or only random pores, fabricated using previously reported methods. The fabricated dual-pore scaffolds supported high cell density, due to the random pores, in combination with uniform cell distribution throughout the scaffold, and higher cell proliferation and viability due to efficient nutrient/oxygen transport through the structured pores. In conclusion, the described fabrication technique is rapid, inexpensive, scalable, and compatible with different polymers, making it suitable for engineering various large scale organs/tissues.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Permeability of polymeric scaffolds with defined pore micro-architecture and interconnectivity fabricated by solid freeform microprinting

Three-dimensional (3D) microprinting is a computerized fabrication technique that can produce porous objects with highly complicated pore micro-architecture using data generated by computer aided design (CAD) or other imaging modalities [1]. This technique has been used for fabrication of porous biodegradable polymeric scaffolds that are intended, by design, to have reproducible and well-define...

متن کامل

Fabrication of Gelatin Scaffolds Using Thermally Induced Phase Separation Technique

Gelatin is considered as a partially degraded product of collagen and it is a biodegradable polymer which can be used to produce scaffolds for tissue engineering. Three-dimensional, porous gelatin scaffolds were fabricated by thermally induced phase separation and freeze-drying method. Their porous structure and pore size were characterized by scanning electron microscopy. Scaffolds with differ...

متن کامل

Investigation of the effective factors on manufacturing calcium phosphates prototypes using 3D printing

Calcium phosphate ceramics has been widely used in the present due to their chemical similarity to bone and good biocompatibility in the physiological environmental and a compatibility with synthetic and natural polymers Recent advancements in additive manufacturing have enabled the fabrication of 3D prototypes with controlled architecture resembling the natural bone. Binder jetting is a versat...

متن کامل

3D Microtomographic Characterization of Precision Extruded Poly- -caprolactone Scaffolds

One of the dominant approaches to tissue engineering is the seeding of biodegradable, biocompatible polymer scaffolds with progenitor cells prior to 3D culture or implantation. The microarchitecture of these scaffolds has direct effects upon the ability of cells to attach, migrate, and differentiate. Microtomographic (micro-CT) scanners enable high-speed 3D characterization of the salient featu...

متن کامل

Fabrication and Evaluation of Electrospun, 3D-Bioplotted, and Combination of Electrospun/3D-Bioplotted Scaffolds for Tissue Engineering Applications

Electrospun scaffolds provide a dense framework of nanofibers with pore sizes and fiber diameters that closely resemble the architecture of native extracellular matrix. However, it generates limited three-dimensional structures of relevant physiological thicknesses. 3D printing allows digitally controlled fabrication of three-dimensional single/multimaterial constructs with precisely ordered fi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Materials science & engineering. C, Materials for biological applications

دوره 61  شماره 

صفحات  -

تاریخ انتشار 2016